Clustering criterion for inertial particles in two-dimensional time-periodic and three-dimensional steady flows.

نویسندگان

  • Themistoklis Sapsis
  • George Haller
چکیده

We derive an analytic condition that predicts the exact location of inertial particle clustering in three-dimensional steady or two-dimensional time-periodic flows. The particles turn out to cluster on attracting inertial Lagrangian coherent structures that are smooth deformations of invariant tori. We illustrate our results on three-dimensional steady flows, including the Hill's spherical vortex and the Arnold-Beltrami-Childress flow, as well as on a two-dimensional time and space periodic flow that models a meandering jet in a channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ordering of small particles in one-dimensional coherent structures by time-periodic flows.

Small particles transported by a fluid medium do not necessarily have to follow the flow. We show that for a wide class of time-periodic incompressible flows inertial particles have a tendency to spontaneously align in one-dimensional dynamic coherent structures. This effect may take place for particles so small that often they would be expected to behave as passive tracers and be used in PIV m...

متن کامل

Three-dimensional characteristic approach for incompressible thermo-flows and influence of artificial compressibility parameter

In this paper the characteristics of unsteady three-dimensional incompressible flows with heat transfer are obtained along with artificial compressibility of Chorin. At first, compatibility equations and pseudo characteristics for three-dimensional flows are derived from five governing equations (continuity equation, Momentum equations in three directions, and energy equation) and then results ...

متن کامل

Chaotic dynamics of inertial particles in three-dimensional rotating flows

Transport and mixing problems in non-turbulent flows have been studied with chaotic advection theory to understand and quantify the characteristics of the fluid particle dynamics in simple analytical flows, and new analyses have been recently extended to realistic and more complex, experimentally realizable flows. Many environmental and engineering flows have also two or more phases, but little...

متن کامل

Adaptive Solution of Steady Two Dimensional Flow on an Unstructured Grid

Two-dimensional Euler equations have been solved on an unstructured grid. An upwind finite volume scheme, based on Roes flux difference splitting method, is used to discretize the equations. Using advancing front method, an initial Delaunay triangulation has been made. The adaptation procedure involves mesh enrichment coarsening in regions of flow with high low gradients of flow properties, acc...

متن کامل

Adaptive Solution of Steady Two Dimensional Flow on an Unstructured Grid

Two-dimensional Euler equations have been solved on an unstructured grid. An upwind finite volume scheme, based on Roe's flux difference splitting method, is used to discretize the equations. Using advancing front method, an initial Delaunay triangulation has been made. The adaptation procedure involves mesh enrichment coarsening in regions of flow with high low gradients of flow properties, ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chaos

دوره 20 1  شماره 

صفحات  -

تاریخ انتشار 2010